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The transition process of a small-amplitude wave packet, generated by a controlled 
short-duration air pulse, to the formation of a turbulent spot is traced experimentally 
in a laminar boundary layer. The vertical and spanwise structures of the flow field 
are mapped at several downstream locations. The measurements, which include all 
three velocity components, show three stages of transition. In  the f i s t  stage, the 
wave packet can be treated as a superposition of two- and three-dimensional waves 
according to linear stability theory, and most of the energy is centred around a mode 
corresponding to the most amplified wave. In the second stage, most of the energy 
is transferred to oblique waves which are centred around a wave having half the 
frequency of the most amplified linear mode. During this stage, the amplitude of the 
wave packet increases from 0.5% to 5 %  of the free-stream velocity. In the final 
stage, a turbulent spot develops and the amplitude of the disturbance increases to 
27 YO of the free-stream velocity. 

Theoretical aspects of the various stages are considered. The amplitude and phase 
distributions of various modes of all three velocity components are compared with 
the solutions provided by linear stability theory. The agreement between the 
theoretical and measured distributions is very good during the first two stages of 
transition. Based on linear stability theory, i t  is shown that the two-dimensional 
mode of the streamwise velocity component is not necessarily the most energetic 
wave. While linear stability theory fails to predict the generation of the oblique 
waves in the second stage of transition, it is demonstrated that this stage appears to 
be governed by Craik-type subharmonic resonances. 

1. Introduction 
The transition from a laminar to a turbulent state in open flows, such as boundary 

layers, is a process by which disturbances of infinitesimal amplitude level (of the 
order of 0.1 YO of the mean velocity or less) grow to amplitude levels in excess of 30 Yo 
of the mean velocity. This process is commonly addressed from the stability 
viewpoint. In the initial stages, it can be characterized through the growth of small 
two-dimensional disturbances with downstream distance (linear instability). At  later 
stages, it continues through a nonlinear deterministic regime where the waves 
develop a three-dimensional configuration, distort the mean flow, generate higher 
harmonics, and finally break down into turbulence. 

The growth of small two-dimensional wavy disturbances in a laminar flow over a 
flat plate was predicted by the theoretical work of Tollmien (1929) and subsequently 
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verified in the experiments of Schubauer & Skramstad (1947). They measured the 
growth rates and propagation velocities of periodic two-dimensional waves excited 
artificially by an oscillating ribbon. The results were in substantial agreement with 
the linear stability calculations for parallel mean flow done by Schlichting (1933). 
These waves grow with downstream distance and, after achieving a certain 
amplitude, develop a three-dimensional configuration with periodicity in the 
spanwise direction, as seen in the experiments by Klebanoff, Tidstrom & Sargent 
(1962). Finally, the entire boundary layer becomes turbulent. 

The nonlinear mechanism describing the secondary growth of three-dimensional 
waves has been the subject of intensive theoretical investigations. Benney & Lin 
(1960) considered only the induced mean flow resulting from the non-resonant 
interaction between two- and three-dimensional waves. Although the model reveals 
a secondary system of spanwise-periodic longitudinal vortices which are qualitatively 
similar to those reported by Klebanoff et al. (1962), i t  was criticised by Stuart (1962) 
because of the difference in wave speeds between the two- and three-dimensional 
waves, in contradiction to  the observations. The first theoretical approach to  be 
confirmed experimentally was due to Raetz (1959, 1964), who showed the possibility 
of resonant wave triads in the boundary layer although he restricted his analysis to  
neutrally stable two-dimensional waves. This approach was extended to include non- 
neutral waves in general parallel shear flows by Craik (1971). Although this 
mechanism, which assumes a small-amplitude two-dimensional primary wave, did 
not explain the results of Klebanoff et al. (who used a high level of excitation of the 
fundamental frequency), this subharmonic growth was observed experimentally by 
Saric & Thomas (1984) and Kachanov & Levchenko (1984) both of whom used a low 
level of excitation. Herbert (1984) analysed the secondary instability problem by 
considering bhe mean flow to be composed of the Blasius profile with a saturated 
finite-amplitude two-dimensional wave. Using Floquet theory, he found that there 
exists a broadband, three-dimensional, instability mechanism, strongly dependent 
on the amplitude of the two-dimensional primary wave. As a special case, the Craik- 
type resonance is recovered as the amplitude of the primary wave goes to zero. 
Calculations based on this theory agree very well with the available experimental 
data (cf. Herbert 1988; Corke & Mangano 1989). 

On the basis of resonance theory, Itoh (1987) showed that the existence of two- 
dimensional waves with finite amplitude can induce three-dimensional distortion 
with spanwise periodicity in the mean flow. The interaction of the distorted mean 
field with Tollmien-Schlichting waves yields new three-dimensional travelling 
waves, with the same streamwise wavenumber as the two-dimensional waves, and 
with the same spanwise wavenumber as the mean flow. 

The early stages of natural transition do not involve a single mode, but have a wide 
spectrum of modes, resulting from either broadband free-stream turbulence or a 
localized initial disturbance. In order to simulate this more natural situation, Gaster 
& Grant (1975) used a pulse excitation rather than a periodic wave maker. In this 
way, all possible modes are excited and a wave packet is formed through selective 
amplification and interference of the linear waves. By positioning a single hot wire 
just outside the laminar boundary layer, Gaster & Grant followed the evolution of a 
wave packet from a smooth packet having a single amplitude maximum close to the 
centreline to  a distorted pattern further downstream having two amplitude maxima 
on either side of the centreline. 

The ' linear ' stage of the evolution was successfully compared to the theoretical 
model proposed by Gaster (1975) who described a wave packet as a superposition of 
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the least-stable mode of all two- and three-dimensional waves. Asymptotic theory 
has also been applied to determine the linear wave packet’s downstream evolution 
and despite some early differences in the correct evaluation of the asymptotic 
integral and the predicted shape of the wave packet far downstream from the point 
of generation (see, for example, Benjamin 1961; Criminale & Kovasznay 1962; 
Gaster 1968) the more recent work by Gaster (1982a, b )  and by Craik (1981) appears 
to have resolved these problems. Regarding the nonlinear evolution of wave packets, 
a weakly nonlinear asymptotic theory for marginally unstable two-dimensional wave 
packets was presented by Stuartson & Stuart (1971)’ and some brief results for the 
nonlinear three-dimensional wave packet have been reported by Itoh (1984). 
Nevertheless, this theory is still incomplete. 

Morkovin (1969) pointed out that the traditional Tollmien-Schlichting route to 
transition might be bypassed directly by nonlinear effects when the initial amplitude 
of the disturbances is sufficiently high to perturb the base flow. This was investigated 
by Amini & Lespinard (1982) who initiated an ‘incipient spot ’ in the boundary layer 
by means of an air jet through a small hole in the wall. A more extensive study which 
demonstrated the linear and nonlinear mechanisms that may contribute to the 
bypass mechanism was conducted by Breuer & Haritonidis (1990) and Breuer & 
Landahl (1990) who considered localized disturbances in general. Their measure- 
ments and computations show that any three-dimensional initial disturbance 
may be described in terms of a wave part, and a ‘transient ’ part which derives from 
the excitation of vertical vorticity modes by the initial disturbance field. While the 
wave part of the disturbance is that part governed by linear stability theory and 
studied by Gaster (1975), the transient portion of the disturbance develops into an 
inclined shear layer which intensifies and elongates with time, in accordance with the 
theoretical predictions of Landahl (1975, 1980) who showed that any general three- 
dimensional disturbance may be subjected to an algebraic instability. However, if 
the initial disturbance amplitude is sufficiently small, the transient initially grows, 
but will eventually decay, leaving only the linear wave portion at downstream 
locations. In the present work, the transient part of the initial disturbance, while 
present, has decayed sufficiently, and does not play any dynamical role in the 
disturbance evolution. 

The overall purpose of the work reported here was to follow the evolution of 
localized disturbances in a laminar boundary layer from a low-amplitude wave 
packet to the formation of a turbulent spot. To the best of our knowledge this is the 
first time that all the stages have been recorded in one experiment. The present work 
extends the previous experimental investigation done by Gaster & Grant ( 1975) 
which was concerned with the initial stages of formation and growth of a wave 
packet where the amplitudes are generally insufficient to generate significant 
nonlinear distortion of the boundary layer. Here, the main focus is on the transition 
stages, and in particular where nonlinear effects are significant. While in previous 
investigations only the streamwise velocity component was measured at a single 
vertical location just outside the boundary layer, in the present work the entire 
spatial structure of the disturbed flow field is mapped by hot-wire measurements 
which include all three velocity components. 
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2. Experimental arrangement 
2.1. Description of the apparatus 

The experiments reported here were done in the closed-loop low-turbulence wind 
tunnel in the Turbulence Research Laboratory a t  MIT. The test section is 6.1 m long, 
1.22 m high and 0.6 m wide. The flat plate, made of aluminium, is 12.7 mm thick and 
is mounted vertically, 10 cm from one of the tunnel sidewalls. A tapered leading edge 
with a rounded tip is attached to the front of the plate. The plate extends the entire 
length of the test section and to  within 10 cm of both the tunnel floor and ceiling. The 
plate is joined to the floor and ceiling by a porous metal plate behind which are ducts 
for suction of the boundary layers which grow in the corners of the test section. The 
suction control was successfully used to contain the contamination by the corner 
flows and to maintain a high-quality laminar boundary layer over the central span 
of the flat plate. 

A right-handed coordinate system is defined with x, y ,  z as the downstream, 
vertical (wall-normal), and spanwise (parallel to the wall) directions respectively, 
with U,  V and W being the corresponding velocity components. Note that in the 
discussion, the term ‘vertical’ always refers to the direction normal to the wall, 
regardless of the actual orientation of the apparatus in the laboratory. The 
measurements cover a 350 cm distance along the x-direction and +40 cm in the z- 
direction. In  the initial, exploratory measurements, the wave packet was generated 
with a circular membrane, similar to the one used by Breuer & Haritonidis (1990). 
However, the disturbance generated in this manner proved to  be unsatisfactory since 
the transient portion was too large. A more successful method was used by which the 
disturbance was generated by a controlled, sinusoidal, air pulse which was introduced 
into the boundary layer through a circular, perforated disk. The perforations, 
0.5 mm in diameter, were confined within a circle of 0.5 cm diameter located on the 
centreline of the plate, at a downstream distance of xo = 81 cm from the leading edge. 
The sinusoidal air pulse was generated by a loudspeaker mounted a t  the back of the 
plate and connected to the cavity behind the perforated disk through a flexible tube, 
7 cm long and having an inner diameter of 0.5 cm. The speaker was driven from the 
amplified output of a function generator. 

The free-stream velocity, U,, used in the experiments was 6.65 m/s, so that the 
local Reynolds number (based on displacement thickness, 6,) a t  the location of the 
disturbance generator was approximately 1000. The excitation signal to the speaker 
was a single period of a 24 Hz sinusoid. This particular frequency was chosen so that 
the corresponding two-dimensional wave just becomes unstable, according to  linear 
stability theory, a t  the location of the disturbance generator. In  the experiments 
reported here, two sets of data were obtained under the same conditions except that 
the initial amplitude level of the wave packet was higher in the second set of 
measurements. The measurements are dense along the x- and z-coordinates and 
include a y-mapping of the flow field. 

The flow measurements were made using constant-temperature hot-wire anem- 
ometry . The streamwise and spanwise velocity components were measured with a 
V-shaped hot-wire probe while the vertical velocity component was obtained by 
using a standard x-probe. The hot wires, made using Wollaston wire 1.27 pm in 
diameter, were built in-house and had a length-to-diameter ratio greater than 300 ; 
they were operated a t  a resistive overheat of 30% and had a maximum frequency 
response of 30 KHz as determined through the square-wave technique. 

The data was acquired using a Phoenix Data A/D system connected to  a PDP 
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FIGURE 1 .  Velocity profiles measured at 78 locations at z = 50 to 350 cm in 25 cm intervals, and 
at z = + 5 ,  +20, and +40 cm. The solid line represents the Falkner-Skan solution with a wedge 
angle parameter value of Q = 0.01. 

11/55 computer. In addition, the computer controlled the positioning of the probe 
via stepping motors as well as the timing of disturbance generation. Additional 
processing and data acquisition were performed with a Microvax I1 computer. 

2.2. Mean Jlow characteristics 
Two criteria were used to determine the quality of the flow in the test section: the 
uniformity of the boundary layer across the span of the plate, and the extent to 
which the flow conformed to a Blasius boundary layer. The spanwise uniformity was 
characterized by measuring the displacement thickness, 6,, at 1 cm intervals over a 
span of 80 cm at different x-locations. The deviation of the displacement thickness 
was less than & 5 % of the mean value at  x = 100 cm and at  free-stream velocity of 
10.3 m/s, except for the locations at z = 10, -2 and - 12 cm where the deviation was 
6, 7 and 10% respectively. It should be emphasized that these deviations are very 
sparsely distributed (3  out of 81 locations), are very localized (with a spanwise extent 
of less than 1 em) and did not have any measurable effect on the evolution or 
structure of the wave packet. Moreover, no significant asymmetries were observed in 
the measurements, even though the locations of the peaks are not symmetric about 
the centreline. 

The development of a small-amplitude wave packet to a spot at  such a free-stream 
velocity requires a long downstream distance (3.5 m) and a wide spanwise spread 
(80 em). Seventy eight velocity profiles are plotted in figure 1 and are compared with 
a Falkner-Skan profile, given by the solid line, with a wedge angle parameter value 
of cr equal to 0.01 (note : the Falkner-Skan parameter is often denoted by the symbol 
/I. However, in this paper, /3 is used to represent the non-dimensional frequency and 
so in order to avoid confusion, the Falkner-Skan parameter is represented here by 
a). The deviation of the measured profiles from the Blasius profile was the result of 
a slightly accelerating flow. The profiles were measured at 13 downstream stations 
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FIGURE 2. The downstream development of & normalized to 8, computed for a Falkner-Skan 
profile with a wedge angle parameter value of u = 0.01. 

from x = 50 cm to 350 cm in 25 cm intervals, and a t  the six z-locations of & 5, & 20, 
and f40 cm. All profiles were normalized using the same virtual origin and, at a 
given downstream distance, by the average displacement thickness of all six profiles 
a t  that  location. The deviations from the Falkner-Skan profile do not show any 
consistent trend, so one may infer that  they are due to  either experimental error 
or slight differences in the corner suction, used to contain the spreading of turbulence 
from the corner flows. The latter possibility seems the most likely one as the 
deviations of profiles spanning z = f 20 cm are considerably smaller than those a t  
f 40 cm. In figure 2, the downstream evolution of the measured average displacement 
thickness, 4, is compared with the displacement thickness calculated for the 
Falkner-Skan profile. By comparing the computed amplification rates of linear 
disturbances in a Blasius flow with those in a Falkner-Skan flow (with CT = 0.01), we 
find that the stability characteristics of the present flow are slightly altered with the 
maximum amplification rate decreasing by approximately 12% a t  Re = 1500 (the 
Reynolds number corresponding to  x = 170 em). 

While the mean flow is accelerating slightly, profiles at any x-location fit the 
Blasius profile very well when normalized by local parameters, i.e. U, and 8,. 
Amplitude equations will naturally depend on the total flow history, in which case 
the slight acceleration of the mean flow will have to be taken into account. Since the 
present results depend on local quantities only, we opted, for simplicity, to work with 
the Blasius profile. 

2.3. Experimental procedure and data processing 

The disturbed flow field, generated by the air pulse, was mapped by positioning the 
hot-wire probe a t  an ( x ,  y, z )  location downstream of the disturbance generator and 
measuring the velocity trace as the disturbed flow was advected past the probe. The 
positioning of the probe within the boundary layer at a given downstream station 
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was done automatically by using the computer to drive the stepping motors and 
taking advantage of knowing the profile shape. First, the probe was moved, in 
accordance with the local Blasius solution, to a desired y-location where U(y)/U, had 
a certain value. Then, in order to position the probe more precisely, an iterative 
interpolation scheme was performed until a specified accuracy, typically within a 
f 2 YO deviation from the desired value of U(y)/U,, was achieved. 

The measurement sequence was initiated by a pulse from the computer which 
triggered the disturbance generator. After waiting a delay time, T, = 
(x-x,)/O.935U0, the velocity record, consisting of 512 points, was digitized at a rate 
such that the total non-dimensional measuring time, 7 = (T-T,) U o / ( x - x o ) ,  was 
approximately 3. The values of the delay time and total measuring time were based 
on the propagation velocities of the wave-packet leading and trailing edges, found by 
Gaster & Grant (1975) to be 0.44 and 0.36 of Uo respectively. The total measuring 
time and the number of points in a velocity record provided sufficient information to 
capture all the relevant frequencies associated with the wave packet. 

At each measuring point, N events (realizations) of the disturbance’s passage were 
recorded and an ensemble average was then formed. The number of events, N ,  was 
a function of the amplitude of the measured disturbance. For very weak disturbances, 
having a streamwise perturbation amplitude of less than 0.2 % of U,, 200 events were 
measured, while for very strong disturbances, having a streamwise perturbation 
amplitude of more than 10 YO of U,, 30 events were sufficient to accurately represent 
the structure. In  order to further reduce high-frequency noise, digital filtering was 
performed on the ensemble-averaged signal. Unless noted differently, the filtering 
frequency corresponds to the non-dimensional frequency, /3 = 2xf 6,/U,,  of 0.4. 

The fluctuation velocities, denoted by the lower-case letters u, v and w, were 
obtained by subtracting the local mean from the ensemble signal. Typically, the 
disturbance occupied one third of the total measuring time of each signal record. 
When ensemble averaged and filtered, the signals were almost indistinguishable from 
individual realizations in the linear and subharmonic stages so that the spectra of 
these signals are a true representation of the spectral content of the individual 
events. The signal averaging was done to eliminate low frequencies caused by 
occasional probe vibration and free-stream velocity fluctuations, while the digital 
low-pass filtering was done to eliminate high-frequency oscillations (e.g. electrical 
noise). 

The Fourier decomposition was accomplished using fast Fourier transforms 
(FFTs) when only a single transform of the time domain was needed. However, for 
a double Fourier transform of both the time and spanwise domains, a combined 
procedure which included a FFT in the time domain and a direct Fourier transform 
in the spanwise domain was performed. This procedure was needed since the 
spanwise structure of the disturbance grows with downstream distance and i t  was 
difficult to  keep a good and consistent resolution in the spanwise direction when the 
number of points in the Fourier transform was restricted to be an integer power of 
2 .  The power spectral densities were smoothed by applying Hanning weights in 
which each discrete density is represented by the sum of half of its original value and 
a quarter of the power of each one of its two neighbouring densities. 
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3. Results and discussion 
3.1. Experimental observations 

The following results describe the temporal and spatial evolution of a controlled 
localized disturbance in a laminar boundary layer from a low-amplitude wave packet 
to the formation of a turbulent spot. By low-amplitude wave packet, it is meant, 
firstly, that the amplitudes are small enough so that i t  can be considered to be a 
superposition of all waves which grow initially according to linear stability theory, 
as was shown by Gaster (1975). Secondly, it is meant that the amplitude of the 
transient portion of the initial disturbance, which is Concentrated in the very low 
frequencies of the disturbance spectrum, is not too large and has substantially 
decayed through viscous diffusion by the time the disturbance reaches the first 
measuring station. 

The development of the wave packet with increasing downstream distance is 
shown in figure 3. Measurements were made at  several downstream stations, along 
the centreline, and inside the boundary layer where the mean velocity is 35% of the 
free-stream velocity. This particular y-location, whose dimensional distance from the 
plate varies with downstream distance, was chosen because it corresponds 
approximately to the location a t  which the streamwise fluctuation of the most- 
amplified two-dimensional wave attains its maximum according to linear stability 
theory. 

In figure 3 ( a ) ,  the plots are normalized by the free-stream velocity, while in figure 
3 ( b )  the plots have been normalized to display the same maximum fluctuations. By 
using these scalings, both the amplification of the wave packet and its detailed shape 
can be observed. Figure 3 ( c )  shows the associated power spectrum distributions 
versus the non-dimensional frequency, /3 = 27cf SJU,. Since the relevant scales are 
the local displacement thickness of the boundary layer, S,, and the free-stream 
velocity, U,, these were used to render the frequency dimensionless. Owing to the 
dispersion relationship of the waves within the wave packet, both the leading and 
trailing edges of the wave packet travel at constant but different velocities. This 
results in the spread of the signal in time being proportional to the distance travelled. 
The divergence of the flow can be appreciated by following the dimensional 
frequency of 30 Hz which corresponds to /3 = 0.093 at x = 160 cm and to /3 = 0.138 
at  x = 350 cm. The values of /3 corresponding to the dimensional frequency of 30 Hz 
have been indicated at the various downstream distances with small crosses marked 
on the associated power spectra plots. 

Three stages of transition are observed. In the first stage (referred to as the linear 
stage) the wave packet can be treated as a superposition of two- and three- 
dimensional waves governed by linear stability theory (see Gaster & Grant 1975; 
Gaster 1975). I n  this experiment, the linear stage is observed from x = 160 cm to 
220 cm, where most of the energy is centred around a wave of frequency /3 = 0.1, 
corresponding to the most amplified wave (for these Reynolds numbers) according to 
linear stability theory (Jordinson 1970). The amplitude of the wave packet is very 
low, 0.3% of U, a t  x = 160 cm and 0.46% at x = 220 cm. During this stage, the 
transient part of the initial disturbance, which is concentrated in low frequencies, 
decays through viscous diffusion. In  the second stage (referred to as the subharmonic 
stage) waves centred around /3 = 0.05 begin to gain energy. This stage starts a t  x = 
220 cm and continues to develop up to x = 300 cm, where the subharmonic band of 
waves overtakes the fundamental band, and the wave packet loses one of its 
fundamental periods (see figure 3a, x = 260 cm). The amplitude of the wave packet 



The evolution of a wave packet in a laminar boundary layer 

7.1 x 10-3 1.2 x 10-3 

t '  
1.2 x 10-3 I 5.8 x 10-4 

6.2 x 10-4 3.0 x lo-' 

3.4 x 10-4 ~ x 10-5 

0.16 
1.9 x 10-4 3.1 x 10-5 

. . . . .  I ,  

8.1 x 10-4 2.3 x 10-4 

6.8 x lo-' 2.6 x 10-4 

585 

x=340cm 

320 cm 

I 6.4x 10-4 1 . 7 ~  lo-' I 300cm 

2.6 x 10-4 4.2 x 10-5 200 cm 

-0.8 0.8 -0.8 

. . . . . , ,  
I .7 x 10-4 2.7 x lo-' 160 an 

0.8 
a* 

FIGURE 4. Spanwise wavenumber versus frequency spectra of streamwise and spanwise ensem ble- 
averaged velocity fluctuation signals at different downstream locations and at yl8, = 0.62. 
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FIGURE 5. Subharmonic stage at  J: = 300 and 320 cm and 48, = 15.0. Ensemble average of 
instantaneous velocity profiles at  various passage times of the disturbance. The symbols, connected 
by a solid line, represent the measured profile while the dotted line indicates the calculated Blasius 
profile. 

within this stage increases from 0.47 YO of the free-stream velocity at x = 240 cm to 
5.2% a t  x = 300 cm. During the final stage, which is observed between x = 320 cm 
and 350 cm, a turbulent spot develops. This stage starts with an increase of energy 
at  low frequencies of the wave packet (x = 320 cm) and then a rapid increase at  high 
frequencies (z = 340 em), followed finally by an apparent sharp increase at  low 
frequencies which results in a signal that is a t  all times positive and of very high 
amplitude (27 YO of the free-stream velocity). At this point, ensemble averages are no 
longer representative of individual realizations because of the loss of coherence 
between the various scales present. 

Measurements of the U and W velocity components in the (x, 2)-plane and at  a y- 
location where U / U ,  = 0.35 enable us to calculate the wavenumber-frequency 
spectra of U and W a t  several downstream locations (figure 4). I n  the linear stage, a t  
x = 200 cm for example, the wave having the highest amplitude has a non- 
dimensional frequency of 0.09 and a zero non-dimensional (with respect to 6,) 
spanwise wavenumber (uz), i.e. it  is a two-dimensional wave. The two-dimensional 
component of the normal velocity, v, is the most amplified and consequently the 
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FIGURE 6. The development of the wave packet with increasing speaker amplitude at a fixed 
downstream distance. Hot wire is located at x = 240 cm, z = 0, and a t  y/8, = 0.62. 

most energetic one. However, owing to the contribution of the vertical vorticity, the 
behaviour of the vertical component, v, is not necessarily reflected by the other two 
components, u and w. This statement, which is supported experimentally by the two- 
dimensional power spectra at  x = 160 cm, will be discussed in more detail in $3.2. 
The two-dimensional spectra at x = 300 cm clearly show that in the subharmonic 
stage two bands of symmetric oblique waves are formed. In the third stage, spectral 
peaks representing different sums and differences of the primary and subharmonic 
peaks can be observed. For example, at x = 320 cm a peak at  p = 0, a, = 0 has 
emerged from the interaction between the primary peak and the two subharmonic 
peaks. Finally, at x = 340 cm, there is a rapid increase of energy at both very low 
frequencies and spanwise wavenumbers. 

Ensemble averages of the instantaneous velocity profiles at  the early (x: = 300 cm) 
and late (x = 320 cm) subharmonic stages at  x/S,  = 15.0 are shown in figure 5. The 
measured profiles are compared with the Blasius velocity profile indicated by the 
dotted lines. The velocity distributions at the leading and trailing edges of the wave 
packet do fit t,he profile; however, the rest of the profiles are distorted. Some of the 
profiles have inflexion points which may lead to an inviscid Rayleigh instability 
producing the high frequencies that we observe immediately after this stage. The 
formation of internal shear layers and their subsequent breakdown has been 
previously observed (for example, the 'spike ' stage described by Klebanoff et al. 
1962). Inflexional profiles were also seen on the centreline but were not as 
pronounced. 

In order to follow more carefully the nonlinear stage, the idea that an increase in 
the initial amplitude level of the wave packet should shorten the linear stage and 
thus advance the entire transition process further upstream was used. In figure 6, the 
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signals of the streamwise fluctuations are measured at  a fixed x-location of 
x = 240 cm, at  a y-location where UlU,  = 0.35 and for several values of the speaker 
amplitude. The value of the speaker amplitude is an arbitrary (not necessarily linear) 
measure of the amplitude of the initial disturbance. I n  figure 6(a)  the subharmonic 
stage, where the subharmonic waves take over and the signal loses one of its 
fundamental periods, is recovered by increasing the speaker amplitude from 1.6 to 
3.0. At a level of 4.5, low- and high-frequency waves gain energy, and a t  a speaker 
level of 5.5 the formation of the spot begins. 

A t  higher excitation levels, the disturbance measured at x = 240 cm continues to 
grow, gaining energy a t  both high and low frequencies. At an amplitude level of 11.4, 
a secondary bulge appears in front of the leading edge of the spot and at  even higher 
levels of initial excitation the two bulges merge into a single spot. 

For all amplitude levels up to A = 8, the velocity traces at x = 240 cm were the 
same as the traces eventually observed a t  some downstream distance in the first 
series of measurements, where the speaker amplitude was very small. From this we 
conclude that increasing the speaker amplitude did not result in any observable 
difference in the transition process other than advancing the entire process upstream 
and shortening the linear stage. For amplitudes greater than A = 8, the secondary 
bulge in the measured velocity a t  x = 240 cm was not observed a t  any location in the 
low-amplitude series, indicating that it is not a natural consequence of the wave 
packet’s growth, but rather it is associated with the initial disturbance generation. 
Breuer & Haritonidis (1990) have shown that €or low amplitudes of the initial 
disturbance, the transient decays exponentially. However, as the initial disturbance 
becomes more energetic (Breuer & Landahl 1990), the transient can grow and the 
distortion in the disturbance that we observe here may be due to such a 
contamination from the nonlinearly growing transient. 

In all subsequent measurements, a higher initial amplitude was used so that the 
nonlinear stages could be easily observed. In  this series, the three characteristic 
stages of transition, linear, subharmonic and turbulent spot were observed at  the 
earlier x-locations of x = 170, 230 and 270 cm. (Corresponding approximately to z = 
200, 270 and 360 cm in the original low-amplitude series.) The streamwise velocity 
and its associated power spectrum a t  these new locations is shown in figure 7. The 
measurements were made on the centreline and inside the boundary layer, where the 
local velocity was 35 YO of the free-stream velocity. In addition, the streamwise signal 
and its spectrum a t  x = 260 cm is shown. This location (corresponding to x = 320 cm 
in the low-amplitude series) represents the beginning of the spot formation process. 
Despite the high fluctuation amplitudes (15 YO of U,) the velocity signals a t  this stage 
are still coherent and the spectrum of the ensemble is thus still meaningful. Although 
the signal a t  the turbulent spot stage (x = 270 cm) is no longer coherent, the presence 
of high frequencies is evident, indicating the rapid breakdown of the disturbance that 
has taken place in the short distance from x = 260 to 270 cm. Recalling figure 5, in 
which inflexional velocity profiles were observed at the equivalent x-location, it 
seems very likely that the generation of the high frequencies observed here is 
associated with the breakdown of those distorted profiles due to inflexional 
instabilities. 

The two-dimensional spectra associated with the first three of these four stations 
are shown in figure 8. Comparison with the corresponding two-dimensional spectra 
in figure 4 emphasizes again the fact that when the initial amplitude level of the wave 
packet is increased its spatio-temporal structure remains unchanged through the 
various stages of transition except for a shift in the x-coordinate. However, since the 
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I 
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(Amp)max 

4.3 10-4  1.2 x 10-4 
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a, 

FIQURE 8. Spanwise wavenumber versus frequency spectra of (a )  streamwise and ( b )  spanwise 
velocity fluctuation signals at yl8, = 0.62 and at three downstream locations representing the 
linear, subharmonic and post-subharmonic stages of the transition process. 

local displacement thickness and Reynolds numbers have changed, the dimensional 
components of the wave packet evolve differently. For example, the dimensional 
frequencies of the most energetic oblique waves in the subharmonic stage are 
different in the two cases and do depend on the initial amplitude level. As in figure 
4, we observed a post-subharmonic stage in which the formation of additional peaks 
of energy a t  approximately /3 = 0, a, = 0 and /3 = 0, a, = kO.7. These peaks appear 
to be the result of nonlinear interactions involving the sums and differences of the 
primary and subharmonic peaks. 

The spanwise structure of the disturbance a t  the three downstream stations 
representing the linear, subharmonic and turbulent stages of transition is shown in 
figure 9. At each downstream position the normalized streamwise and spanwise 
fluctuation velocities are plotted at 10 spanwise locations. The solid and dotted lines 
correspond to measurements obtained at positive and negative values of z 
respectively and a t  a y-location where UlU,  = 0.35. Since the spanwise velocity is an 
antisymmetric function of the spanwise coordinate, the w-signal has been inverted 
when z < 0 for comparison purposes. 

At the linear stage, the maximum amplitude of  the u- and w-signals have 
approximately the same value. While the amplitude of the spanwise perturbation 
increases from zero at the centreline to a maximum a t  some distance away from the 
centreline and then decreases monotonically with increasing spanwise distance, the 
amplitude of the streamwise perturbation decreases almost monotonically with 
increasing distance from the centreline. However, it is possible that the streamwise 
fluctuation velocity might have an additional maximum away from the centreline a t  
a different height in the boundary layer. By comparing the solid and dotted lines, i t  
is demonstrated that the symmetry (and antisymmetry) of the disturbance is very 
good a t  the linear stage. 



x 
=

 1
70

 c
m 

%
 u

/u
, 

%
 w

/u
, 

24
0 
a
n
 

%
 u

/u
, 

Yo
 W

/U
, 

30
0 

cm
 

%
 u

/u
, 

%
 w

/u
, 

1.
2 

- 
1.

2 

1
 

z
=

f2
c

m
 

H
 

~ 

0.
6 

2.
4v

0.
6 

2.
4 

0.
6 

2.
4 0

.6
 

2.
4 

-i
.6

 
2.

4 
0.

6 
2.

4 
7

 
7
 

7
 

7
 

7
 

7
 

FI
GU

RE
 

9.
 T

he
 s

pa
nw

is
e 

st
ru

ct
ur

e 
of

 t
h

e 
w

av
e 

pa
ck

et
 a

t y
/d

, 
=

 0
.6

2 
an

d
 a

t 
th

re
e 

do
w

ns
tr

ea
m

 l
oc

at
io

ns
 r

ep
re

se
nt

in
g 

th
e 

li
ne

ar
, s

ub
ha

rm
on

ic
 a

nd
 t

ur
bu

le
nt

 s
ta

ge
s 

of
 t

ra
ns

it
io

n 
ar

e 
sh

ow
n 

by
 a

 s
et

 o
f 

st
re

am
w

is
e 

an
d 

sp
an

w
is

e 
ve

lo
ci

ty
 

fl
uc

tu
at

io
n 

re
co

rd
s 

at
 v

ar
io

us
 s

pa
nw

is
e 

lo
ca

ti
on

s.
 T

he
 s

ol
id

 li
ne

s 
co

rr
es

po
nd

 t
o

 m
ea

su
re

m
en

ts
 o

bt
ai

ne
d 

at
 p

os
it

iv
e 

z-
 

va
lu

es
 a

nd
 t

he
 d

ot
te

d 
li

ne
s 

co
rr

es
po

nd
 t

o
 v

al
ue

s 
ob

ta
in

ed
 a

t 
ne

ga
ti

ve
 v

al
ue

s 
of

 z
 (

th
e 

w
-c

om
po

ne
nt

 h
as

 b
ee

n 
in

ve
rt

ed
 

to
 f

ac
il

it
at

e 
sy

m
m

et
ry

 c
om

pa
ri

so
ns

).
 



592 J .  Cohen, K .  S.  Rreuer and J .  H .  Haritonidis 

FIGURE 10. Perspective display of the streamwise velocity and vorticity fluctuations showing the 
different shapes of the  wave packet a t  y/S, = 0.709 and at  the three downstream locations 
representing the linear, subharmonic and turbulent stages of the transition process. 

The symmetry of the disturbance structure is at its worst during the subharmonic 
stage. The symmetry is a strong function of the disturbance amplitude. As the 
distance away from the centreline increases, and the amplitude of the disturbance 
decreases, the signal recovers its ‘linear’ wave-packet form and its symmetry 
improves significantly. One possible cause for the loss of symmetry might have been 
a slight probe misalignment during data collection. Since the structure of the 
disturbance changes significantly with both y and z, a small error in the vertical or 
spanwise placement of the hot-wire probe would also result in an observed decreased 
spanwise symmetry. Close to the centreline where most of the nonlinearities take 
place (cf. §3.2), the amplitude of the streamwise signal is much larger than the 
amplitude of the spanwise perturbation velocity. 

During the spot stage, the amplitude of the coherent spanwise velocity is negligible 
compared with the amplitude of the coherent streamwise fluctuations. Since there 
are, by this stage, significant turbulent fluctuations which are filtered out by the 
ensemble average, we cannot estimate the relative amplitudes of the instantaneous 
spanwise and streamwise components, only those of the phase-averaged components. 
However, both the u- and the w-velocities contain appreciable energy at high 
frequencies relative to what was observed in the linear and subharmonic stages. The 
spot manifests itself over a large spanwise range and far away from the centreline, 
at z = f 38 cm, the disturbance amplitudes are again small and the wave-packet 
shape still prevails. 

The overall shape of the disturbance, at the linear, subharmonic and turbulent 
stages of transition and at a y-position where U/U,  = 0.4, can best be seen in the 
perspective projections of the signal on the z-plane in figure 10. At the top of the 
figure, views of the streamwise velocity are shown representing the symmetric part 
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of the disturbance, while a t  the bottom of the figure views of the streamwise 
vorticity, 

auj av 5 = _-_ 
ay a z ’  

are shown, representing the antisymmetric portion of the structure. The streamwise 
vorticity records were computed from the flow field after the entire ( y ,  z)-plane was 
mapped a t  the three representative downstream stations. The views shown in figure 
10 represent the time history of the disturbance during its passage through a fixed 
downstream location. Note that the amplitudes shown at the three streamwise 
positions have been scaled differently. The wave character of the disturbance at x = 

170 cm is evident, while a t  x = 240 em, the structure appears more complicated, and 
has achieved a turbulent-spot-like character by x = 300 cm. At this late stage, the 
high frequencies have lost their phase coherence and therefore, although the 
disturbance a t  x = 300 cm has a smooth appearance in figure 10, much information 
has been lost by the averaging. The structure a t  x = 240 cm is discussed in more 
detail in $3.3. 

3.2. Xome theoretical considerations 

In  the following section various experimental features observed and reported in $3.1 
are discussed and explained in accordance with linear stability theory. The linear 
stage was modelled by Gaster (1975) who successfully reproduced the experimental 
results measured in collaboration with Grant (Gaster & Grant 1975) in which they 
followed the early development of the wave packet outside the boundary layer 
(y/6, = 3.2). I n  his analysis, Gaster assumed that the wave packet can be described 
as a superposition of the least-stable two- and three-dimensional waves which are the 
normal mode solutions of the Orr-Sommerfeld equation. Each fluctuating quantity, 
associated with a mode of non-dimensional frequency, /I, and a spanwise 
wavenumber, n,, can be expressed as 

( 1 )  f = j Y )  ci(a,z+a,z-pt) 

where 01, is a complex constant whose real and imaginary parts are the streamwise 
wavenumber and the growth rate respectively. 

An important aspect, which is related to the linear stage and which needs further 
clarification, concerns the fact that  the most amplified two-dimensional mode does 
not necessarily contribute the most energy to the u fluctuation velocity component. 

For three-dimensional disturbances, the linearized equations of motion are the 
pair of equations (see Squire 1933; Benney & Gustavsson 1981) 

(3) 

where k2 = ai+a,2, c = /I/n,, and the phase velocity of the wave is given by 
p/Re (az). R is the local Reynolds number based on the local displacement thickness 
and free-stream velocity. 

Equation (2) is the familiar homogeneous On-Sommerfeld equation for the three- 
dimensional complex amplitude 8 of the vertical velocity v. The equation for the 
vertical vorticity amplitude, $, is inhomogeneous and its homogeneous part has a 
different eigenvalue operator. While the structure of 8 depends only on the solution 
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of the Orr-Sommerfeld equation, the structure of the streamwise and spanwise 
fluctuating velocities depends on the solutions of both equations and is given by 

Using Squire’s (1933) theorem, we can relate any three-dimensional mode to an 
equivalent two-dimensional mode at a lower Reynolds number. We should emphasize 
that Squire’s theorem does not guarantee that the two-dimensional mode is the most 
amplified mode. However, Watson (1960) showed in the temporal case for plane 
Poiseuille flow that below a threshold Reynolds number the two-dimensional mode 
is indeed the most amplified one, although for higher values of the Reynolds number 
(as one approaches the upper branch of the neutral curve) a three-dimensional mode 
can become the most amplified mode. At all values of the Reynolds number under 
discussion in this study, computations confirm that the two-dimensional mode 
remains the most amplified. Thus i t  is correct to  state that the two-dimensional wave 
is the most amplified one and that i t  is the most energetic wave in terms of the 
normal fluctuations, v. However, for a given height in the boundary layer, i t  is not 
necessary that the two-dimensional mode be the most energetic wave in terms of the 
u-velocity component. While the magnitude of the streamwise two-dimensional 
mode depends only on 8 (since { = 6 = 0 ) ,  the magnitude of a three-dimensional 
mode is a sum of contributions associated with both 8 and $ (see (4)). This, however, 
is only true inside the boundary layer, since 7 goes to  zero very rapidly outside the 
boundary layer where the mean shear, U’, is zero (see (3)). In  their experiments, 
Gaster & Grant (1975) placed their hot wire a t  y/6, = 3.2. This position lies outside 
the region of mean shear, and so their measurements reflect the contribution to  u 
only from the Orr-Sommerfeld mode. As we shall show, the effect of 7 contributes to 
a marked contrast between the structure of the wave packet inside and outside the 
boundary layer. 

The effect of 7 on the horizontal velocities is demonstrated in figure 11. The two- 
dimensional power spectra measured a t  x = 170 cm (linear stage) and at  a y-location 
where U / U ,  is 0.5 are shown. The upper plots show the two-dimensional power 
spectra of the u and v velocity components measured with an x -wire. The lower plots 
show the two-dimensional power spectra of the u and w velocity components 
measured with a V-shaped wire. It is evident that while the most energetic mode of 
the v velocity component is a two-dimensional wave, the most energetic mode of the 
u-component, due to the additional effect of the vertical vorticity, is a three- 
dimensional wave. It is also evident from the results presented in this figure that the 
use of the two different probes in measuring the streamwise fluctuation did not result 
in any significant difference. 

The linear theory fails to predict the subharmonic stage, because it does not allow 
for the interaction between different modes. However, based on these measurements, 
i t  is believed that this stage can be described by wave-triad resonances based on the 
weakly nonlinear analyses of Raetz (1959, 1964), and Craik (1971). From figure 8 it 
is evident that most of the energy of the streamwise component of the wave packet 
is concentrated around two oblique waves and a single two-dimensional wave. The 
two oblique waves have a non-dimensional frequency of approximately 0.05 and 
spanwise wavenumbers of 0.276, while the non-dimensional frequency of the two- 
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FIGURE 1 I .  Linear stage, x = 170 cm, y/6, = 0.897. Spanwise wavenumber against frequency 
spectra of all velocity fluctuations showing that the most energetic mode is a two-dimensional wave 
only for the v-component. The top spectra were measured with an x -wire while the bottom spectra 
with a V-shaped wire. 

dimensional wave is about 0.1. The subharmonic resonance conditions for such a case 
require that the speeds of the two waves be the same, which implies that the axial 
wavenumber of the two-dimensional fundamental wave be twice as much as those of 
the subharmonic oblique waves. These conditions were verified by solving the 
Orr-Sommerfeld equation based on the local mean velocity profile and Reynolds 
number. The theoretical values for the streamwise wavenumber of the two- 
dimensional fundamental wave and the three-dimensional subharmonic wave were 
found to be 0.3 and 0.16 respectively, giving approximately the required ratio. 

The resonance conditions are also fulfilled for the subharmonic stage shown in 
figure 4 a t  x = 300 em associated with the first set of measurements. Moreover, the 
resonant conditions were also verified for a preliminary set bf measurements where 
the free-stream velocity was 8 m/s and the wave packet wai generated by bscillating 
vertically a small membrane located on the centreline of the plate at zo = 50 cm. At 
x = 260 cm the subharmonic wave had a non-dimensional freqhency of 0.06 and 
spanwise and streamwise wavenumbers of 0.19 and 0.303 respectively. 

At the two downstream stations representing the linear and subharmonic stages, 
measurements of all three velocity components were made, mapping the elltin? (y, z ) -  
plane. A more detailed examination of the influence of the initial ardplitude level of 
the wave packet on its spatial evolution was done by making dense measurements in 
the streamwise and spanwise directions and included a vertical mapping of the flow 
field which was absent in the first set of measurements. The flow was mapped at 
twelve vertical positions, nine inside the boundary layer where the local velocity 
(U/Uo)  was 0.2,0.3, . . ., 0.9,0.95, and at  three positions outside the boundary layer 
where y/6, was 3 , 4  and 5. At  each height y, a double Fourier transform in time and 
the spanwise direction was carried out so that the vertical distribution for each mode 
could be obtained. The vertical amplitude and phase distributions of the most 
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(4 
Normalized amplitude Phase 

(b) 
Normalized amplitude Phase 

-0.5 5 .5  
--n -0.5 -na 5.5 
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FIQURE 12. Linear stage, z = 170 cm. Comparison of measured and computed amplitude and 
phase distributions obtained for waves having (a) /3 = 0.0859, a, = 0, (a,)r = 0.258, (a,)i = 
-0.0099; ( b )  /3 = 0.0859, a, = 0.16, (aJr = 0.246, (a,), = -0.0067. 

amplified two-dimensional wave, a t  the first of the downstream locations mentioned 
above, are shown in figure 12(a), while the distributions for a representative three- 
dimensional wave are shown in figure 12(b). The data points calculated from 
measurements are represented by the symbols while the solutions from linear 
stability theory are given by the solid lines. 

It is important to  emphasize that for each mode, only one free constant exists to 
match the amplitudes of all three velocity components. The constant was determined 
by matching the areas under the theoretically and experimentally obtained curves 
for the streamwise velocity components. I n  the comparison presented in figure 12 the 
streamwise velocity components were normalized to have a maximum of 1,  and the 
vertical and spanwise components are scaled accordingly. In  the comparison of the 
theoretical phase distributions with the measured ones, the measured phases were 
uniformly shifted by a constant to match the theoretical phase value a t  a given 
y-location. 

The eigenvalue and eigenfunction solutions of the Orr-Sommerfeld equation 
(equation (2)) were obtained using a shooting method employing orthonormalization 
techniques (cf. Conte 1966). The solution of the vertical vorticity equation, (3),  
consists of homogeneous and particular parts. Davey & Reid (1977) proved that for 
a temporal amplification case (a, real and p complex in (l)) ,  the free spectrum of the 
vertical vorticity equation consists only of damped modes. This constraint was 
derived by multiplying the homogeneous part of (3) by the complex conjugate of Q 
and integrating from y = 0 to infinity. By following the same procedure it can be 
easily shown that the same constraint holds for the spatial case (a, complex, p real). 
In  the present case the free spectra of (2) and (3) do not satisfy the resonance 
conditions given by Benney & Gustavsson (1981), and thus only the forced response 
to (3) determines the vertical vorticity structure. 
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(4 (4 
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FIQURE 13. Subharmonic stage, r = 240 cm. Comparison of measured and computed amplitude 
and phase distributions obtained for waves having: (a) /3 = 0.105, a, = 0, (aJr = 0.312, (aJi = 
-0.0025; (b )  /3 = 0.052, a, = 0.23, (aJr = 0.145, (aJj = -0.0044. 

The amplitude and phase distributions a t  the linear stage are shown for the most 
amplified two-dimensional wave in figure 12 (a ) ,  while the distributions corresponding 
to the most energetic mode in u, which is a three-dimensional wave, are shown in 
figure 12 (b). The maximum values of the measured normalized streamwise 
fluctuation amplitudes of the two waves are 3.5 x and 4.1 x lop4, respectively. 
The agreement between the theoretical and measured distributions is very good, but 
this is not too surprising, since the amplitude of the wave packet is still very small. 

The amplitude and phase distributions at the subharmonic stage are shown in 
figure 13 for two waves participating in the subharmonic resonance. From the 
theoretical eigenvalues (given in the caption of figure 13) it is evident that  the most 
energetic two-dimensional fundamental wave and its three-dimensional subharmonic 
wave, both propagate a t  almost the same phase velocity, thus fulfilling the resonance 
conditions. Although nonlinear mechanisms govern this stage, the agreement 
between the theoretical and measured distributions is quite good, suggesting the use 
of weakly nonlinear analysis in which the nonlinear terms of the equations of motion 
affect the growth of the amplitude with time and with downstream distance but do 
not affect the distribution of the disturbance along the shear coordinate y. There has 
been a considerable amount of work on the development and application of weakly 
nonlinear analysis in shear flows although most of the work has concentrated on the 
interactions between a single two-dimensional wave and a pair of oblique modes (for 
good reviews of the literature, see Craik 1985; Bayly, Orszag & Herbert 1988). The 
application of the theory to a wave packet has not (to our knowledge) been 
performed and is presently underway. 
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3.3. The spatial structure of the disturbed $ow 
The streamwise and vertical evolution of the disturbance shape can be seen from 
contour plots of the streamwise velocity component plotted in the (z ,  t)-plane in 
figure 14. Contour plots are displayed for two heights from the plate and for three 
downstream distances representing the linear, subharmonic and turbulent stages. 
The contours a t  the top and a t  the bottom of figure 14 correspond to measurements 
inside the boundary layer where U/U,  = 0.4 (y/S, = 0.709), and to  measurements 
outside the boundary layer where y/S, = 4.0. Initially, a t  the linear stage, the wave 
packet has an elliptic bowed shape and a wavy character which is emphasized by 
plotting contours having positive values with solid lines and contours having 
negative values with dotted lines. The wave packet outside the boundary layer has 
the same form as that inside the boundary layer except for a lower magnitude and 
a phase reversal of the entire structure. This is in accordance with the linear stability 
theory which assumes a superposition property and predicts the phase reversal and 
the decrease in magnitude of each normal mode outside the boundary layer (see 
figure 12). 

At the subharmonic stage and inside the boundary layer the characteristic periodic 
structure within the packet is lost and warped wave fronts are formed having 
symmetrical maximum and minimum amplitudes on either side of the centreline. 
The contour plot of the wave packet outside the boundary layer does show the start 
of the peak splitting that seems to characterize the subharmonic stage, but the basic 
wave-packet shape is still present. The reason for this dramatic difference between 
what is observed inside the boundary layer and what is observed above the boundary 
layer is because the eigenfunction for the most energetic three-dimensional 
subharmonic mode (which represents the nonlinear interaction) goes to  zero very 
rapidly outside the boundary layer (cf. figure 13). The explanation for this behaviour 
lies in the role of the vertical vorticity, 7. Inside the boundary layer, the presence of 
a strong mean shear implies that the influence of 7 on the three-dimensional modes 
will be very strong (contributing as much as 80% to the amplitude). However, above 
the boundary layer, where 7 is zero, only the OrrSommerfeld portion of u is present 
and hence the three-dimensional mode amplitude decreases significantly, and the 
disturbance retains its wave-packet shape. These results are in agreement with those 
of Gustavsson (1978) and Henningson (1988) who found that the horizontal velocities 
are dominated by 7 when a mean shear is present. 

Figure 14 (and figure 10) show an apparent absence of wave structure a t  the 
turbulent spot stage. This is a result of the fact that  the wavy structure present in 
any one such spot loses its phase coherence relative to  another and consequently is 
averaged out by the ensembling process. However, the ensemble average still yields 
some relevant information concerning the low frequency and large-scale shape of the 
disturbance, and figure 14 indicates that a concentrated structure has formed with 
a single central maximum inside the boundary layer and a single minimum outside 
the boundary layer. At this downstream distance, the disturbance structure as a 
whole seems to have lost any resemblance to its original wave-packet shape. 

The vertical structure of the disturbed region can be seen most readily from 
contour displays of the normalized streamwise velocity and vorticity fluctuations in 
the (y,z)-plane shown in figures 15-17. The displayed contours are shown for the 
three downstream distances representing the linear, subharmonic and turbulent 
stages. At each downstream station the contours are displayed for various passage 
times of the disturbance. The symmetrical part of the disturbance shape, represented 
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by contour displays of the normalized streamwise fluctuation velocity, is shown in 
part (a ) ,  while the antisymmetrical part, represented by contour displays of the 
normalized streamwise fluctuation vorticity, is shown in part ( b ) .  Positive and 
negative values are indicated by solid and dotted contour lines, respectively. 

The wave-packet shapes at the linear stage are presented for various times in figure 
15. The time parameter increases from left to right and covers a time range 
corresponding approximately to one half of a single period associated with the wave 
packet, as can be deduced by comparing the structures a t  T = 1.405 and at T = 1.527. 
Initially the streamwise velocity fluctuation has a single maximum located on the 
spanwise centreline and a t  a vertical distance corresponding approximately to the 
location where the most amplified wave attains its maximum according to linear 
stability theory. The vorticity structure consists of two major pairs of antisymmetric 
eddies (with respect to the spanwise centreline); the more intense pair is located 
closer to the centreline and above the weaker pair. As time increases, the concentrated 
u-structure broadens while the upper pair of streamwise vortices is amplified and 
moves towards the wall, ‘pushing’ the bottom pair outward. Then, the single peak 
of the u-structure splits into two on either side of the z-axis and a minimum peak 
between them is formed on the centreline. The spanwise locations of the two 
maximum peaks correspond to the spanwise locations of the maximum and 
minimum peaks of the streamwise vorticity eddies. Finally, a concentrated structure 
of negative streamwise velocity fluctuations arises around the location of the 
previous minimum peak and the entire structure of both u and 5 has a similar (but 
reversed) shape with respect to the structure formed initially. 

The structure just described resembles the one inferred from streamlines only by 
Klebanoff et al. (1962). The streamline pattern a t  T = 1.497 resembles that 
corresponding to station C in their figure 19, while the disturbance shapes a t  the 
subharmonic stage, presented in figure 16 bear some resemblance to the structure 
corresponding to station D in the same figure. 

While the structures of the streamwise vorticity fluctuations are similar to the 
structures shown for the linear stage, the shapes of the streamwise velocity 
fluctuations are more complicated a t  the subharmonic stage than at the linear stage. 
Initially, a t  T = 1.466, the streamwise velocity fluctuations exhibit a ‘linear’ shape 
similar to the one shown for the linear stage a t  T = 1.497, but the centre of symmetry 
is off the centreline. At T = 1.497 three symmetrical maximum peaks arise, and a t  the 
two resulting valleys between them, two minimum peaks are formed at a later time. 
Note that the spanwise wavelength of the vortical structure has been halved from 
what it was in the linear stage, similar to that observed by Klebanoff et al. (1962). 

At the spot formation stage, shown in figure 17, the ratio between the normalized 
amplitudes of the streamwise velocity and vorticity fluctuations is an order of 
magnitude greater than the ratios observed in the previous stages. At the leading 
edge of the disturbance a concentrated structure extending outside the boundary 
layer and having negative values of streamwise velocity is formed. As the disturbance 
passes by, its amplitude increases and two peaks are formed; a positive peak very 
close to the wall and a negative one above it. The positive peak is strengthened while 
the negative peak is weakened until it becomes insignificant a t  later times. As 
mentioned above, the streamwise vorticity fluctuations are very weak, and the 
antisymmetry of their shape is poor. 
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4. Conclusions 
The evolution of a wave packet has been characterized as having three distinct 

stages. The linear stage agrees very well with the model proposed by Gaster (1975) 
and extends the measurements of Gaster & Grant (1975) to include the entire 
boundary layer. I n  the interior of the boundary layer, the effect of the vertical 
vorticity becomes important, and we find that owing to  this, a three-dimensional 
mode becomes the most energetic wave in the streamwise velocity component, even 
though the two-dimensional mode is the most amplified according to  linear stability 
theory. The second stage witnesses the growth of the subharmonic oblique mode 
which satisfies the three-wave resonance criterion for a Craik-type secondary 
instability. It should be emphasized that the subharmonic resonance is unforced, as 
it develops naturally. Although nonlinear interactions are very important in this 
stage, the eigenfunctions of each mode are still well predicted by linear stability 
calculations based on the local Blasius profile. I n  this stage, the role of the vertical 
vorticity is very dramatic and we see that the observations above the shear region 
reflect a very much simpler view of what is going on inside the boundary layer where 
the streamwise velocity fluctuations become dominated by the contribution of 7. 

The final stage of growth, the spot formation stage, starts with the growth of 
modes with high and low frequencies resulting from the sums and differences of the 
wavenumbers and frequencies of the two-dimensional fundamental and the three- 
dimensional subharmonic waves. After the establishment of this post-subharmonic 
stage, we see the rapid development of a broadband spectrum and a loss of coherence 
between the individual realizations. Only at this stage do we find significant 
distortion of the mean flow, indicating that the nonlinear interactions observed up 
to this stage are confined to  the various components of the wave packet. 
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